大功率LED太阳花相变散热器数值优化研究

向建化, 张春良, 陈胜, 周超, 陈从桂

PDF(2472 KB)
PDF(2472 KB)
广州大学学报(自然科学版) ›› 2015, Vol. 14 ›› Issue (2) : 61-65.
机电与信息科学

大功率LED太阳花相变散热器数值优化研究

  • 向建化, 张春良, 陈胜, 周超, 陈从桂
作者信息 +

Numerical optimization of phase-change radiator for high-power LED

  • XIANG Jian-hua, ZHANG Chun-liang, CHEN Sheng, ZHOU Chao, CHEN Cong-gui
Author information +
History +

摘要

随着LED芯片单颗功率和封装集成度的提高,散热问题已成为大功率LED迫切需要解决的问题.文章提出了一种基于相变传热的一体化大功率LED太阳花散热器,利用正交实验和模拟仿真相结合的方法对太阳花散热器进行了优化,分析了中心孔直径和翅片参数的改变对散热器性能的影响.将数值模拟的结果与实测值进行了对比,结果表明:散热器的热性能影响因素从主到次为翅片厚度,数目,高度,中心孔直径,最佳方案最高温度降低了5.94 ℃,优化后的散热器能够满足200 W以上集成LED灯的散热要求.

Abstract

With the improvement of the LED power and the package integration, heat dissipation has become an urgent issue to be solved. This study proposed an integrated high-power LED radiator based on phase-change heat transfer, which realized the seamless connection between the high-efficient heat-transfer cavity and the cooling fins, and eliminated the contact resistance of the radiator. The radiator was optimized by using the approach combining the orthogonal tests and the numerical simulations. The effects of the central-hole diameter and the fin parameters on the radiator performance were analyzed. The numerical simulation results were compared with the measured values. The results showed that the factors that affected the radiator performance were the fin thickness, the fin number, the fin height and the central-hole diameter from primary to secondary. The maximum temperature for the optimized scheme was 5.94 ℃ lower. The optimized radiator is capable of meeting the cooling requirements of the integrated LED lights above 200 W.

关键词

大功率LED / 太阳花散热器 / 数值优化 / 正交试验

Key words

high-power LED / radiator / numerical optimization / orthogonal experiment

引用本文

导出引用
向建化, 张春良, 陈胜, 周超, 陈从桂. 大功率LED太阳花相变散热器数值优化研究. 广州大学学报(自然科学版). 2015, 14(2): 61-65
XIANG Jian-hua, ZHANG Chun-liang, CHEN Sheng, ZHOU Chao, CHEN Cong-gui. Numerical optimization of phase-change radiator for high-power LED. Journal of Guangzhou University(Natural Science Edition). 2015, 14(2): 61-65

参考文献

[1] 万忠民, 陈敏, 刘伟, 等. 基于多孔微热沉的大功率LED冷却技术研究[J]. 机械工程学报, 2010, 46(8): 109-113.
WAN Z M, CHEN M, LIU W, et al. Research on porous micro heat sink for thermal management of high power LED[J]. J Mechan Engin, 2010, 46(8): 109-113.
[2] VASILIEV L L. Micro and miniature heat pipes-electronic component coolers[J]. Appl Therm Engin, 2008, 28(4):266-273.
[3] BLADIMIR R A, BO F, PETERSON G P. Comparison and optimization of single-phase liquid cooling devices for the heat dissipation of high-power LED arrays[J]. Appl Therm Engin, 2013, 59(1-2): 648-659.
[4] WANG J C. Thermal module design and analysis of a 230 W LED illumination lamp under three incline angles[J]. Microel J, 2014, 45(4): 416-423.
[5] CHENG H H, HUANG D S, LIN M T. Heat dissipation design and analysis of high power LED array using the finite element method[J]. Microel Reliab, 2012, 52(5): 905-911.
[6] KIM L, JONG H C, SUN H J, et al. Thermal analysis of LED array system with heat pipe[J]. Thermoch Acta, 2007, 455(1/2): 21-25.
[7] LIU S, YANG J, GAN Z, et al. Structural optimization of a microjet based cooling system for high power LEDs[J]. Internat J Therm Sci, 2008, 47(8): 1086-1095.
[8] 战栋栋,钱吉裕. 热管导热板当量导热系数研究[J]. 电子机械工程, 2012, 04: 12-14.
ZHAN D D, QIAN J Y. Study on effective conductivity of heat pipe embedded Al plates[J]. Electr Mechan Engin, 2012, 04: 12-14.
[9] 王超, 何雅玲, 刘迎文, 等. 基于正交设计试验的电机散热的数值模拟研究[J]. 工程热物理学报, 2011, 32(1): 89-92.
WANG C, HE Y L, LIU Y W, et al. Numerical research on heat transfer in motors based on the orthogonal experiment[J]. J Engin Thermoph, 2011, 32(1): 89-92.
[10]李程, 李伟平,李宗涛. 基于正交实验法的大功率LED工矿灯散热器设计[J]. 半导体技术, 2010, 35(增刊): 122-126.
LI C, LI W P, LI Z T. High-Power LED work mineral lamp heatsink design based on orthogonal experiment[J]. Semic Tech, 2010, 35(S): 122-126.

基金

广东省自然科学基金资助项目(S2013010013469, S2011040004110, S2012010009505); 广东省高校科技创新资助项目(2013KJCX0143); 广州市属高校科研计划资助项目(2012A083).
PDF(2472 KB)

145

Accesses

0

Citation

Detail

段落导航
相关文章

/