0-1测试法是通过离散数据转化变量的线性增长率K(c)的输出值是否趋近于1或0来判断离散序列是否具有混沌特性的新方法.以经典Verhulst种群模型生成的3组时间序列(弱混沌、完全混沌、3-周期)为研究对象,对不同的增长因子SymbollAp和数据长度N进行序列模拟,验证0-1测试方法的有效性和抗噪性.结果显示:0-1测试法能有效识别Verhulst序列的混沌特征,其中弱混沌序列K(c)值随数据长度的增加不断增大到0-700,完全混沌序列的K(c)值趋于1,3-周期序列K(c)值趋于0;进一步对3种序列添加正态白噪声(噪声比=5%),添加后对应K(c)值的变化不大,说明低强度噪声并不能影响其序列具有的内在非线性特性, 即0-1测试法具有一定的抗噪性.
Abstract
The 0-1 test method is a new method which the chaos of discrete time series can be determined by the condition that the discrete data transformation variable's linear growth rate K(c) approaches to 1 or 0. Three groups of time series (weak chaos, strong chaos and 3 period-doubling) are generated by classic Verhulst population model as the research object is to simulate different values of growth factor (SymbollAp) and data length N, and test the efficiency anti-noise capacity of this method. The result shows that the 0-1 test method can effectively identify the chaos characteristics of the Verhulst series, the K(c) value of weak chaos series increases to 0.700 3 as the data length increased, and the K(c)value is approximate to 1 for strong chaos series and 3 period-doubling seriesK(c)is close to 0. After adding white Gaussian noise (noise ratio=5%) to three time series, the corresponding K(c)value does not change greatly. This suggests that the low intensity noise does not affect its intrinsic nonlinear characteristics, and the 0-1 method has a certain resistance to noise.
关键词
0-1测试 /
混沌识别 /
Verhulst种群模型 /
正态白噪声
{{custom_keyword}} /
Key words
0-1 test /
chaos identification /
Verhulst population model /
normal white noise
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]SCHUSTER H G, JUST W. Deterministic chaos: An introduction[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA,2005.
[2] 朱华,姬翠翠. 分形理论及其应用[M]. 北京:科学出版社,2011.
ZHU H, JI C C. Fractal theory and its application[M]. Beijing:Science Press,2011.
[3]BAPTISTA M S, CALDAS I L. Stock market dynamics[J]. Physica A ,2000,284(1/4):539-564.
[4]GINARSA I M, SOEPRIJANTO A, PURNOMO M H. Controlling chaos and voltage collapse using an ANFIS-based composite controller-static var compensator in power systems [J]. Int J Electr Power Energy Syst,2013,46:79-88.
[5]WANGA S, HUANGA G H. A polynomial chaos ensemble hydrologic prediction system for efficient parameter inference and robust uncertainty assessment[J]. J Hydrol,2015,530:716-733.
[6]STAN C, CRISTESCU C P, SCARLAT E I. Similarity analysis for DNA sequences based on chaos game representation, case study: The albumin[J]. J Theor Biol,2010,267(4):513-518.
[7]李亚安,徐德民,张效民. 基于混沌理论的水下目标信号特征提取研究[J]. 兵工学报,2002,23(2):279-281.
LI Y A, XU D M, ZHANG X M. Feature extraction of underwater target signals based on the chaos theory[J]. Acta Armam,2002,23(2):279-281.
[8]万丽,刘欢,杨林,等. 成矿元素巨量聚集的混沌机制——斑岩型和构造蚀变岩型矿床例析[J]. 岩石学报,2015,31(11):3455-3465.
WAN L, LIU H, YANG L, et al. Chaotic mechanisms of the ore-forming element accumulation: Case study of porphyry and disseminated-veinlet gold deposits[J]. Acta Petr Sin,2015,31(11):3455-3465.
[9]PELLICANO F, VESTRONI F. Nonlinear dynamics and bifurcations of an axially moving beam [J]. J Vib Acoust,2000,122:21-30.
[10] RIEDEL C H, TAN C A. Coupled forced response of an axially moving strip with internal resonance[J]. Int J Nonlin Mech,2002,37(1):101-116.
[11] GOTTWALD G A, MELBOURNE L. A new test for chaos in deterministic systems[J].Proc R Soc A: Math Phys Eng Sci,2004,460(2042):603-611.
[12] GOTTWALD G A, MELBOURNE L. Testing for chaos in deterministic systems with noise [J]. Physica D,2005,212(1/2):100-110.
[13] GOTTWALD G A, MELBOURNE L. On the implementation of the 0-1 test for chaos [J]. SIAM J Appl Dyn Syst,2009,8(1):129-145.
[14] KRESE B, GOVEKAR E. Nonlin analysis of laser droplet generation by means of 0-1 test for chaos[J]. Nonlin Dyn,2012,67(3):2101-2109.
[15] WEBEL K. Chaos in German stock returns——New evidence from the 0-1 test[J]. Econ Lett,2012,115:487-489.
[16] 危润初,肖长来,张余庆,等. 0-1测试法在降水混沌识别和分区研究中的应用[J]. 东北大学学报:自然科学版,2014,35(12):1792-1795,1800.
WEI R C, XIAO C L, ZHANG Y Q, et al. Chaos identification of precipitation time series and subdivision based on the 0-1 test[J]. J NE Univ:Nat Sci,2014,35(12):1792-1795,1800.
[17] KRESE B, GOVEKAR E. Analysis of traffic dynamics on a ring road-based transporttation network by means of 0-1 test for chaos and Lyapunov spectrum[J]. Transp Res Part C,2013,36:27-34.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(41172295)
{{custom_fund}}