基于ANSYS的输电铁塔抗风加固研究

刘树堂, 熊国文, 刘启华, 李文斌, 刘智勇

PDF(3047 KB)
PDF(3047 KB)
广州大学学报(自然科学版) ›› 2017, Vol. 16 ›› Issue (2) : 51-57.
土木工程与建筑科学

基于ANSYS的输电铁塔抗风加固研究

  • 刘树堂1, 熊国文1, 刘启华1, 李文斌2, 刘智勇3
作者信息 +

Study on the strengthening of wind-resistant for transmission tower based on ANSYS

  • LIU Shu-tang1, XIONG Guo-wen1, LIU Qi-hua1, LI Wen-bin2, LIU Zhi-yong3
Author information +
History +

摘要

为解决某些输电铁塔因设计时间较早或环境变化等原因已无法满足安全使用要求的问题,文章采用一种使用钢板和抱箍夹具的加固方法对铁塔主柱角钢加固,该方法无需对原塔材拆卸或打孔,且加固效果显著.采用有限元软件ANSYS建立其数值模型,与试验结果进行对比验证.研究该加固方法在某工程双回路直线塔中的加固效果,并对其进行参数分析,考察加固钢板的宽度、厚度、屈服强度及加固钢板与原主柱角钢间的初始间隙等因素对加固效果的影响.结果表明:加固钢板与主柱角钢间的初始间隙对加固效果的影响较为显著,且间隙值越大,承载能力越低.该加固方法施工简便、安全,能有效提升铁塔主柱角钢的极限承载力,可应用于输电铁塔的加固.

Abstract

Some transmission towers, designed under old regulation, fail to meet the new safety requirement/environment. This paper adopted a method to reinforce the main structural members of transmission tower which includes steel plate and fixtures. This method needn’t to punch or disassemble the original tower materials, and shows remarkable effect. The numerical analysis model is made by ANSYS software, and analysis results are compared with experimental results. The effect of this method in the straight-line tower of double circuit was investigated. Influence analysis is made on the width, thickness, yield strength of steel plate and the initial gap between steel plate and angle steel. The result shows that, the effect of initial gap between steel plate and angle steel is relatively remarkable, the greater the gap, the smaller the bearing capacity. This method could be safely, expediently, and effectively applied to the reinforcement of transmission towers.

关键词

输电铁塔 / 抗风 / 加固方法 / 承载力

Key words

transmission tower / wind-resistant / reinforcement method / bearing capacity

引用本文

导出引用
刘树堂, 熊国文, 刘启华, 李文斌, 刘智勇. 基于ANSYS的输电铁塔抗风加固研究. 广州大学学报(自然科学版). 2017, 16(2): 51-57
LIU Shu-tang, XIONG Guo-wen, LIU Qi-hua, LI Wen-bin, LIU Zhi-yong. Study on the strengthening of wind-resistant for transmission tower based on ANSYS. Journal of Guangzhou University(Natural Science Edition). 2017, 16(2): 51-57

参考文献

[1] 胡毅,刘凯,吴田. 输电线路运行安全影响因素分析及防治措施[J]. 高电压技术,2014,40(11):3491-3499.
HU Y, LIU K, WU T. Analysis of influential factors on operation safety of transmission line and countermeasures[J]. High Volt Eng,2014,40(11):3491-3499.
[2] 李正,杨靖波,韩军科. 2008年输电线路冰灾倒塔原因分析[J]. 电网技术,2009,33(2):31-35.
LI Z, YANG J B, HAN J K. Analysis on transmission tower toppling caused by icing disaster in 2008[J]. Power Syst Tech,2009,33(2):31-35.
[3] 谢强,李杰. 电力系统自然灾害的现状与对策[J]. 自然灾害学报,2006,15(4):126-131.
XIE Q, LI J. Current situation of natural disaster in electric power system and countermeasure[J]. J Nat Disast,2006,15(4):126-131.
[4] 郑世平. 220kV输电线路倒塔事故原因分析及措施[J]. 内蒙古电力技术,2013,31(5):28-30.
ZHENG S P. Reason analysis of tower collapse on 220kV power transmission line and its preventive measures[J]. Inner Mongolia Electr Power,2013,31(5):28-30.
[5] 谢强,张勇,李杰. 华东电网500kV任上5237线飑线风致倒塔事故调查分析[J]. 电网技术,2006,30(10):59-63,89.
XIE Q, ZHANG Y, LI J. Investigation on tower collapses of 500kV Renshang 5237 transmission line caused by downburst[J]. Power Syst Tech,2006,30(10):59-63,89.
[6] 周文涛,韩军科,杨靖波. 输电铁塔主材加固方法试验[J]. 电网与清洁能源,2009,25(7):25-29.
ZHOU W T, HAN J K, YANG J B. Experimental research on strengthening method of transmission tower leg[J]. Power Syst Clean Energ, 2009,25(7):25-29.
[7] 韩军科,杨靖波,杨风利. 输电铁塔加固补强承载力研究[J]. 工业建筑,2010,40(7): 114-117,131.
HAN J K, YANG J B, YANG F L. Study on bearing capacity of reinforced and strengthened transmission tower[J]. Ind Constr,2010,40(7):114-117,131.
[8] 赵强,王德弘. 500kV拉线门型塔补强加固试验研究[J]. 中国电力,2014,47(3):96-100.
ZHAO Q, WANG D H. Experiment study on reinforcement of 500kV guyed transmission tower[J]. Electr Power,2014,47(3):96-100.
[9] LU C H, MA X, MILLS J E. Modeling of retrofitted steel transmission towers[J]. J Constr Steel Res,2015,112(1):138-154.
[10]MILLS J E, MA X, ZHUGE Y. Experimental study on multi-panel retrofitted steel transmission towers[J]. J Constr Steel Res,2012,78(6):58-67.
[11]ALBERMANI F, MAHENDRAN M, KITIPORNCHAI S. Upgrading of transmission towers using a diaphragm bracing system[J]. Eng Struct,2004,26(6):735-744.
[12]谢强,孙力,张勇. 500kV输电塔结构抗冰加固改造方法试验研究[J]. 中国电机工程学报,2011,31(16):108-114.
XIE Q, SUN L, ZHANG Y. Experimental study on retrofitting of 500kV transmission tower against ice load[J]. Proc CSEE,2011,31(16): 108-114.
[13]谢强,孙力,林韩,等. 500kV输电杆塔结构抗风极限承载力试验研究[J]. 高电压技术,2012,38(3):712-719.
XIE Q, SUN L, LIN H, et al. Experimental study on wind-resistant ultimate load-carrying capacity of 500kV transmission tower[J]. High Volt Eng,2012,38(3):712-719.
[14]蔡熠. M2型自立输电铁塔增加横隔面补强后抗风能力分析[J]. 湖北电力,2014,38(10):40-43.
CAI Y. Analysis of wind resistance capacity of M2-type self-supporting power reinforced plan bracing[J]. Hubei Electr Power,2014,38(10):40-43.
[15]KOMATSU H, ISHI K, FUKUSHIMA A. Experimental study on buckling strength of angle steel compression members with built-up bracing[J]. Steel Constr Eng,2009,16(62):27-34.
[16]刘树堂. 基于多波屈曲单元的输电铁塔结构抗风极限荷载分析[J]. 建筑科学与工程学报,2015,32(4):105-110.
LIU S T. Analysis of wind-resistant limit load of transmission line steel tower based on Multi-wave buckling elements[J]. J Archit Civil Eng,2015,32(4):105-110.
[17]刘树堂,陈原,朱文正. 端部铰接初弯曲构件弹塑性本构关系研究[J]. 建筑钢结构进展,2014,16(2):6-12.
LIU S T, CHEN Y, ZHU W Z. Study on the Elasto-Plastic constitutive relationship of end-pinned initially curved members[J]. Prog Steel Build Struct,2014,16(2):6-12.
[18]刘树堂. 钢结构[M]. 北京:中国电力出版社,2009.
LIU S T. Steel structure[M]. Beijing: China Electric Power Press,2009.
PDF(3047 KB)

115

Accesses

0

Citation

Detail

段落导航
相关文章

/