基于一维非对称有限深方阶阱的证券收益率拟合分析

刘 广, 陈 智,刘和健

PDF(1504 KB)
PDF(1504 KB)
广州大学学报(自然科学版) ›› 2018, Vol. 17 ›› Issue (3) : 11-16.
数学与物理学

基于一维非对称有限深方阶阱的证券收益率拟合分析

  • 刘 广a, 陈 智b*,刘和健c
作者信息 +

A fitting analysis of stock returns based on one dimensional unsymmetrical finite depth square well

  • LIU Guanga, CHEN Zhib, LIU He-jianc
Author information +
History +

摘要

金融市场与物理世界存在一定的联系,证券价格波动表现出一定的粒子行为特征.首先,对量子物理中的方势阱进行总结,并将其延伸到更具一般意义、更复杂的势阱上.然后,通过MATLAB求解超越方程,得出波函数的数值解,并做出其几率分布图像.最后,用一维非对称有限深方势阱拟合上证指数收益率.研究发现,波函数几率分布对指数收益率具有较好的拟合作用,指数波动具有丰富的物理内涵.研究丰富了金融物理学相关成果,且对市场建设、风险管理等有重要启示.

Abstract

There are some certain relationships between the financial market and the physical world. The fluctuation of security price shows a certain characteristic of particle behavior. Firstly, we summarize the square potential well in quantum physics, and extend the objective law to more general and complex ones. Then we solve the transcendental equation by MATLAB, and deduce the numerical solution of the wave function and its probability distribution image. Lastly, we use one dimensional unsymmetrical finite deep square potential well to fit the rate of return of Shanghai Stock Index. We find that the fitting effect is satisfactory, and the volatility of Stock Index has some rich physical connotations. This research could enrich the results of Econophysics, and has important enlightenment to capital market construction and risk management.

关键词

金融物理 / 一维非对称有限深方势阱 / 波函数 / 上证指数

Key words

econophysics / one dimensional unsymmetrical finite deep square potential well / wave function / Shanghai Stock Index

引用本文

导出引用
刘 广, 陈 智,刘和健. 基于一维非对称有限深方阶阱的证券收益率拟合分析. 广州大学学报(自然科学版). 2018, 17(3): 11-16
LIU Guang, CHEN Zhi, LIU He-jian. A fitting analysis of stock returns based on one dimensional unsymmetrical finite depth square well. Journal of Guangzhou University(Natural Science Edition). 2018, 17(3): 11-16

参考文献

[1] MANTEGNA R N,STANLEY H E.An introduction to econophysics:Correlations and complexity in finance[M].Cambridge:Cambridge University Press,1999.
[2] SONG G H,LIU G.EMH and FMH:Origin,evolution and tendency[C]∥Fifth International Workshop on Chaos-fractals Theories and Applications,2012:308-311.
[3] 刘广,宋光辉.分形:非线性科学理论、创新与实践[J].系统科学学报,2013,21(2):47-50.
[4] SCHADEN M.Quantum finance[J].Physica A Statistical Mechanics & Its Application,2002,316(1/4):511-538.
[5] BAAQUIE B E.Quantum finance:Path integrals and hamiltonians for options and interest-rates[M].Cambridge: Cambridge University Press,2004.
[6] SHI L L.Does security transaction volume-price behavior resemble a probability wave?[J].Physica A Statistical Mechanics & Its Application,2006,366:419-436.
[7] YE C,HUANG J P.Non-classical oscillator model for persistent fluctuations in stock markets[J].Physica A Statistical Mechanics & Its Application,2009,387(5):1255-1263.
[8] ATAULLAH A,DAVIDSON I,TIPPETT M.A wave function for stock market returns[J].Physica A Statistical Mechanics & Its Application,2009,388(4):455-461.
[9] ZHANG C,HUANG L.A Quantum model for the stock market[J].Physica A Statistical Mechanics & Its Application,2010,389(24):5769-5776.
[10]LIU G.A study on assets categorizations and optimal allocation via an improved algorithm[C]∥Proceedings of the International Conference on Data Science and Business Analytics,2018:255-264.
[11]陈泽乾.量子金融的意义[J].数学物理学报,2003,23A(1):115-128.
[12]陈泽乾,汪寿阳.量子金融的几个问题[J].自然科学进展,2004,14(7):742-748.
[13]余卫军,张新生.上证指数收益率分布的拟合[J].经济数学,2004(1):56-63.
[14]尹建武.一维中心不对称方势阱中束缚态粒子的能级和归一化波函数[C]∥第十五次全国原子、原子核物理研讨会暨全国近代物理研究会第八届年会论文集,2004:78-81.
[15]郝正同.一维方势阱中束缚态粒子波函数和能级的求解[J].大学物理,2011,30(2):25-27.
[16]薛娜,廖宜静.中国股票市场的波函数[J].井冈山大学学报(自然科学版),2012,33(5):18-20.

基金

广东省自然科学基金资助项目(2017A030313420);广东省哲学社会科学基金资助项目(GD14XYJ16);广东省教育厅人文社科基金资助项目(2014WQNCX074)
PDF(1504 KB)

143

Accesses

0

Citation

Detail

段落导航
相关文章

/