风敏高层结构风振舒适度可靠性研究

杨 春, 吴 轶, 石盛沛, 莫真铭

PDF(3409 KB)
PDF(3409 KB)
广州大学学报(自然科学版) ›› 2018, Vol. 17 ›› Issue (4) : 58-65.
土木工程与建筑科学

风敏高层结构风振舒适度可靠性研究

  • 杨 春1,2, 吴 轶3*, 石盛沛1, 莫真铭3
作者信息 +

Reliability study on wind-induced vibration comfort level of a wind-sensitive high-rise structure

  • YANG Chun1,2, WU Yi3, SHI Sheng-pei1, MO Zhen-ming3
Author information +
History +

摘要

高层建筑往高、柔方向发展,使得风敏感性结构的风振舒适度要求不容忽视,而阻尼器作为风敏感性高层结构灾变控制的一部分会对结构造成很大的影响.文章以一栋风敏感性高层结构作为研究对象,考虑9种阻尼器失效布置情况,从结构顶点加速度峰值响应对结构在不同重现期风荷载作用下的风振舒适度进行可靠性评估.研究表明,在10年、30年、50年重现期的风荷载作用下,结构舒适度处于性能健康水准的保证率分别为96.95%、85.77%、78.58%,30年和50年的重现期内保证率分别下降了11.18%和18.37%.随着风荷载作用重现期的增大,可靠度结构的舒适度动力可靠度出现了明显的降低.在10年一遇风荷载作用下,当结构上的阻尼器全部失效时,结构的舒适度动力可靠度降低最多达17.71%.当阻尼器失效数量相同,阻尼器失效位置在结构上部时,结构风振可靠度的降低明显高于失效位置在结构下部的情况.阻尼器的不对称分布会加剧结构的扭转效应而降低风振舒适度.

Abstract

High-rise buildings are going higher and more flexible, incurring an imperative demand for wind-induced vibration comfort level of wind-sensitive buildings. Furthermore, as an important part of disaster control, dampers have great influence on the vibration control of structures. In this paper, a wind-sensitive high-rise building was selected, in consideration of nine types of damper failure pattern, then reliability evaluation of wind-induced comfort level under wind loads with different return periods based on structural peak acceleration responses. Results show that in 10 years, 30 years, 50 years return period of wind load, the structure of comfort in the performance of health level of assurance rate achieves 96.95%, 85.77% and 96.95% respectively, 30 years and 50 years return period reliability decrease 11.18% and 18.37%. Under wind actions with 10-year return period, when all dampers failed, the maximum decrease of dynamic reliability of wind-induced vibration comfort level is 17.71%; if the number of dampers failed is the same, structural dynamic reliability drops more significantly when failed dampers located in the upper structure than in the lower structure. Asymmetric distribution of the dampers will exacerbate torsional effects of the structure and thus reduce the wind-induced vibration comfort level.

关键词

风敏感性结构 / 风振舒适度 / 可靠性分析 / 阻尼器

Key words

wind-sensitive structure / wind-induced vibration comfort level / reliability analysis / dampers

引用本文

导出引用
杨 春, 吴 轶, 石盛沛, 莫真铭. 风敏高层结构风振舒适度可靠性研究. 广州大学学报(自然科学版). 2018, 17(4): 58-65
YANG Chun, WU Yi, SHI Sheng-pei, MO Zhen-ming. Reliability study on wind-induced vibration comfort level of a wind-sensitive high-rise structure. Journal of Guangzhou University(Natural Science Edition). 2018, 17(4): 58-65

参考文献

[1] 丁洁民, 吴宏磊, 赵昕. 我国高度250 m以上超高层建筑结构现状与分析进展[J]. 建筑结构学报, 2014, 35(3):1-7.
[2] 彭程, 马良喆, 薛恒丽,等. 超高层结构应用液体粘滞阻尼器在中国的发展[J]. 工程抗震与加固改造, 2015, 37(3):1-9.
[3] 陈永祁, 马良喆, CHEN Y Q,等. 粘滞阻尼器在实际工程应用中相关问题讨论[J]. 工程抗震与加固改造, 2014, 36(3):7-13.
[4] 陈永祁, 曹铁柱, 马良喆. 液体粘滞阻尼器在超高层结构上的抗震抗风效果和经济分析[J]. 土木工程学报, 2012,45(3):58-66.
[5] CAO M, XIE L, TANG H. Performance study of 8-story steel building equipped with oil damper damaged during the 2011 great east Japan earthquanke part 2: Novel retrofit strategy[J]. Journal of Asian Architecture & Building Engineering, 2016,15(2):303-310.
[6] 谢丽宇, 唐和生, 薛松涛,等. 首例油阻尼器破坏对结构设计的经验教训——日本3·11地震的启示[J]. 结构工程师, 2015, 31(2):2-9.
[7] 朱冬飞. 粘滞阻尼器失效分析及其对结构性能影响研究[D].广州:广州大学,2016.
[8] 建筑结构荷载规范[M]. 北京:中国建筑工业出版社, 2012.
[9] 米斯特. 环境激励下高层建筑工作模态分析与有限元建模分析研究[D]. 长沙:湖南大学, 2014.
[10]HUANG M F, CHAN C M, LOU W J. Optimal performance-based design of wind sensitive tall buildings considering uncertainties[J]. Computers & Structures, 2012, 98/99:7-16.
[11]YE X, YAN Q, WANG W, et al. Output-only modal identification of Guangzhou new TV tower subject to different environment effects[C]∥The 6th workshop on Advanced Smart Materials and Smart Structure Technology,2011,99:25-26.
[12]周云, 汪大洋, 陈小兵. 基于性能的结构抗风设计理论框架[J]. 防灾减灾工程学报, 2009, 29(3):244-251.
[13]韩枫. 特高压输电塔线体系的抗风可靠度研究[D]. 重庆:重庆大学, 2012.
[14]吕大刚, 宋鹏彦, 崔双双,等. 结构鲁棒性及其评估指标[J]. 建筑结构学报, 2011, 32(11):44-54.
[15]FABER M H, MAES M A, STRAUB D, et al. On the quantification of robustness of structures[C]∥Safety and Reliability, 2006:79-87.
[16]BAKER J W, SCHUBERT M, FABER M H. On the assessment of robustness[J]. Structural Safety, 2008, 30(3):253-267.
[17]HASOFER A M, LIND N C. Exact and invariant second-moment code format[J]. Journal of Engineering mechanics, ASCE, 1974, 100(1):111-121.

基金

广东省科技计划资助项目(2013B020200016)
PDF(3409 KB)

127

Accesses

0

Citation

Detail

段落导航
相关文章

/