移动边缘计算技术现状与几个关键问题的研究综述

夏云霓, 马堉银, 肖璇, 刘航

PDF(2840 KB)
PDF(2840 KB)
广州大学学报(自然科学版) ›› 2019, Vol. 18 ›› Issue (2) : 17-29.

移动边缘计算技术现状与几个关键问题的研究综述

  • 夏云霓, 马堉银, 肖璇, 刘航
作者信息 +

A survey on the mobile edge computing paradigm and its related research progresses

  • XIA Yun-ni, MA Yu-yin, XIAO Xuan, LIU Hang
Author information +
History +

摘要

任务计算卸载技术是为了解决本地计算资源不足而产生的,长期以来主要在云端、移动端等场景中出现.随着边缘计算时代的到来,移动边缘计算端(MEC)的任务卸载技术也受到广泛的关注和研究.文章从三个方面进行了论述:①介绍了MEC的网络架构及其部署方案,并对不同的部署方案做了分析和对比;②从移动计算卸载决策、资源分配和卸载系统这几个角度进行研究;③总结归纳了目前MEC的任务计算卸载技术所面临的移动性管理、安全管理以及服务管理等方面的挑战.

Abstract

The task computing offloading technology is generated to solve the problem of limited local computing resources. It has mainly appearing in the cloud and mobile scenes for a long time. With the advent of edge computing, are the task offloading technology of the mobile edge computing end (MEC) has also received extensive attention and research. This paper first introduces the network architecture and deployment scheme of MEC, and analyzes and compares different deployment scenarios. Then it studies from the perspectives of mobile computing offload decision, resource allocation and offloading system. Finally, it summarizes challenges faced by the current MEC's mission calulation in mobility management, security management, and service management.

关键词

任务计算卸载 / MEC / 卸载决策 / 卸载系统 / 问题与挑战

Key words

task computing and offloading / MEC / offloading decisions / offloading systems / problems and challenges

引用本文

导出引用
夏云霓, 马堉银, 肖璇, 刘航. 移动边缘计算技术现状与几个关键问题的研究综述. 广州大学学报(自然科学版). 2019, 18(2): 17-29
XIA Yun-ni, MA Yu-yin, XIAO Xuan, LIU Hang. A survey on the mobile edge computing paradigm and its related research progresses. Journal of Guangzhou University(Natural Science Edition). 2019, 18(2): 17-29

参考文献

[1] Shi W, Cao J, Zhang Q, et al. Edge computing: Vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646.
[2] Hu Y C, Patel M, Sabella D, et al. Mobile edge computing——A key technology towards 5G[J]. ETSI White Paper, 2015, 11(11): 1-16.
[3] Mao Y, You C, Zhang J, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
[4] Kosta S, Aucinas A, Hui P, et al. Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading[C]∥2012 Proceedings IEEE Infocom, IEEE, 2012: 945-953.
[5] Dinh H T, Lee C, Niyato D, et al. A survey of mobile cloud computing: Architecture, applications, and approaches[J]. Wireless Communications and Mobile Computing, 2013, 13(18): 1587-1611.
[6] Fernando N, Loke S W, Rahayu W. Mobile cloud computing: A survey[J]. Future Generation Computer Systems, 2013, 29(1): 84-106.
[7] Mao Y, Zhang J, Letaief K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12):3590-3605.
[8] Tran T X, Hajisami A, Pandey P, et al. Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges[J]. IEEE Communications Magazine, 2017, 55(4):54-61.
[9] Roman R, Lopez J, Mambo M. Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges[J]. Future Generation Computer Systems, 2018, 78: 680-698.
[10]Taleb T, Samdanis K, Mada B, et al. On multi-access edge computing: A survey of the emerging 5G network edge architecture & orchestration[J]. IEEE Communications Surveys & Tutorials, 2017(99): 1657-1681.
[11]Mach P, Becvar Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017(99):1628-1656.
[12]Chochliouros I P, Giannoulakis I, Kourtis T, et al. A model for an innovative 5G- oriented architecture, based on small cells coordination for multi-tenancy and edge services[C]∥IFIP International Conference on Artificial Intelligence Applications and Innovations, 2016: 666-675.
[13]Giannoulakis I, Kafetzakis E, Trajkovska I, et al. The emergence of operator-neutral small cells as a strong case for cloud computing at the mobile edge[J]. Transactions on Emerging Telecommunications Technologies, 2016, 27(9):1152-1159.
[14]Lobillo F, Becvar Z, Puente M A, et al. An architecture for mobile computation offloading on cloud-enabled LTE small cells[C]∥Wireless Communications and Networking Conference Workshops, 2014:1-6.
[15]Wang S, Tu G H, Ganti R, et al. Mobile micro-cloud: Application classification, mapping, and deployment[C]∥Proc Annu Fall Meeting ITA (AMITA), 2013: 1-7.
[16]Taleb T, Ksentini A, Frangoudis P. Follow-me cloud: When cloud services follow mobile users[J]. IEEE Transactions on Cloud Computing, 2016(99):369-382.
[17]Aissioui A, Ksentini A, Gueroui A. An efficient elastic distributed SDN controller for follow-me cloud[C]∥International Conference on Wireless and Mobile Computing, Networking and Communications, 2015:876-881.
[18]Liu J, Zhao T, Zhou S, et al. Concert: A cloud-based architecture for next-generation cellular systems[J]. IEEE Wireless Communications, 2014, 21(6):14-22.
[19]Liu J, Mao Y, Zhang J, et al. Delay-optimal computation task scheduling for mobile-edge computing Systems[C]∥IEEE International Symposium on Information Theory, 2016:1451-1455.
[20]Mao Y, Zhang J, Letaief K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12):3590-3605.
[21]Zhang K, Mao Y, Leng S, et al. Optimal delay constrained offloading for vehicular edge computing networks[C]∥IEEE International Conference on Communications, 2017:1-6.
[22]Jia M, Cao J, Yang L. Heuristic offloading of concurrent tasks for computation-intensive applications in mobile cloud computing[C]∥Computer Communications Workshops, 2014:352-357.
[23]Kao Y H, Krishnamachari B, Ra M R, et al. Hermes: Latency optimal task assignment for resource-constrained mobile computing[C]∥IEEE Conference on Computer Communications, 2015:1894-1902.
[24]Kamoun M, Labidi W, Sarkiss M. Joint resource allocation and offloading strategies in cloud enabled cellular networks[C]∥IEEE International Conference on Communications, 2015:5529-5534.
[25]Labidi W, Sarkiss M, Kamoun M. Energy-optimal resource scheduling and computation offloading in small cell networks[C]∥International Conference on Telecommunications, 2015:313-318.
[26]Zhang H, Guo J, Yang L, et al. Computation offloading considering fronthaul and backhaul in small-cell networks integrated with MEC[C]∥2017 IEEE Conference on Computer Communications Workshops, 2017: 115-120.
[27]You C, Huang K. Multiuser resource allocation for mobile-edge computation offloading[C]∥Global Communications Conference,2017:1-6.
[28]Muoz O, Pascual-Iserte A, Vidal J. Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10):4738-4755.
[29]Nan Y, Li W, Bao W, et al. Adaptive energy-aware computation offloading for cloud of things systems[C]∥IEEE Access, 2017(5):23947-23957.
[30]Liu L Q, Chang Z, Guo X J, et al. Multi-objective optimization for computation offloading in mobile-edge computing[C]∥2017 IEEE Symposium on Computers and Communications (ISCC), 2017:832-837.
[31]Valerio V D, Lo P F. Optimal virtual machines allocation in mobile femto-cloud computing: An MDP approach[C]∥Wireless Communications and NEtworking Conference Workshops, 2014:7-11.
[32]Zhao T, Zhou S, Guo X, et al. A cooperative scheduling scheme of local cloud and internet cloud for delay-aware mobile cloud computing[C]∥IEEE Globecom Workshops, 2015:1-6.
[33]Guo X, Singh R, Zhao T, et al. An index based task assignment policy for achieving optimal power-delay tradeoff in edge cloud systems[C]∥IEEE International Conference on Communications, 2016:1-7.
[34]XU J, Chen L, Ren S. Online learning for offloading and autoscaling in energy harvesting mobile edge computing[J]. IEEE Transactions on Cognitive Communications & Networking, 2017(99):361-373.
[35]Ndikumana A, Ullah S, Leanh T, et al. Collaborative cache allocation and computation offloading in mobile edge computing[C]∥2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), 2017: 366-369.
[36]Wang C, Yu F R, Liang C, et al. Joint computation offloading and interference management in wireless cellular networks with mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2017(99):7432-7445.
[37]Ketykó I, Kecsks L, Nemes C, et al. Multi-user computation offloading as multiple knapsack problem for 5G mobile edge computing[C]∥European Conference on Networks and Communications,2016: 225-229.
[38]Oueis J, Strinati E C, Barbarossa S. Small cell clustering for efficient distributed cloud computing[C]∥International Symposium on Personal, Indoor, and Mobile Radio Communication, 2015: 1474-1479.
[39]Oueis J, Calvanese S E, De D A, et al. On the impact of backhaul network on distributed cloud computing[C]∥Wireless Communications and Networking Conference Workshops, 2014:12-17.
[40]Satyanarayanan M, Bahl P, Caceres R, et al. The case for vm-based cloudlets in mobile computing[J]. IEEE pervasive Computing, 2009(4): 14-23.
[41]Chun B G, Maniatis P. Augmented smartphone applications through clone cloud execution[C]∥HotOS, 2009, 9: 8-11.
[42]Gordon M S, Hong D K, Chen P M, et al. Accelerating mobile applications through flip-flop replication[C]∥Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services. ACM, 2015: 137-150.
[43]Cuervo E, Balasubramanian A, Cho D, et al. Maui: Making smartphones last longer with code offload[C]∥Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services. ACM, 2010: 49-62.
[44]Kosta S, Aucinas A, Hui P, et al. Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading[C]∥2012 Proceedings IEEE Infocom. IEEE, 2012: 945-953.
[45]Gordon M S, Jamshidi D A, Mahlke S, et al. Comet: Code offload by migrating execution transparently[C]∥Presented as Part of the 10th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 12), 2012: 93-106.
[46]Wang S, Urgaonkar R, He T, et al. Mobility-induced service migration in mobile micro-clouds[C]∥Military Communications Conference, 2014:835-840.
[47]Wang S, Urgaonkar R, Zafer M, et al. Dynamic service migration in mobile edge-clouds[C]∥IFIP Networking Conference, 2015: 1-9.
[48]Nadembega A, Hafid A S, Brisebois R. Mobility prediction model-based service migration procedure for follow me cloud to support QoS and QoE[C]∥IEEE International Conference on Communications, 2016:1-6.
[49]Wang S, Urgaonkar R, He T, et al. Dynamic service placement for mobile micro-clouds with predicted future costs[J]. IEEE Transactions on Parallel & Distributed Systems, 2017, 28(4):1002-1016.
[50]Mach P, Becvar Z. Cloud-aware power control for cloud-enabled small cells[C]∥IEEE Communication Conference Workshops (GC Wkshps), Austin, TX, USA, 2014:1038-1043.
[51]Taleb T, Ksentini A. An analytical model for follow me cloud[C]∥Proceeding IEEE Glob Communication Conference (GLOBECOM), Atlanta, GA, USA, 2013:1291-1296.
[52]Shibin D, Kathrine G J W. A comprehensive overview on secure offloading in mobile cloud computing[C]∥2017 4th International Conference on Electronics and Communication Systems (ICECS), 2017: 121-124.
[53]You C, Huang K, Chae H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3):1397-1411.
[54]Feld J. PROFINET—Scalable factory communication for all applications[C]∥IEEE Internation Workshop on Factory Communication Systems, Vienna, Austria, 2004: 33-38.
PDF(2840 KB)

375

Accesses

0

Citation

Detail

段落导航
相关文章

/