一类Volterra型积分微分方程不可数个有界正解的存在性

PDF(903 KB)
PDF(903 KB)
广州大学学报(自然科学版) ›› 2023, Vol. 22 ›› Issue (6) : 82-81.
数学

一类Volterra型积分微分方程不可数个有界正解的存在性

  • 罗志敏,钟满田
作者信息 +

Existence for uncountable bounded positive solutions of Volterra integral differential equations

  • LUO Zhimin, ZHONG Mantian
Author information +
History +

摘要

文章讨论了一类Volterra型积分微分方程解的存在性,运用Banach空间中不动点方法,得到两个定理给出方程存在不可数个有界正解的充分条件,拓展了一些已有结果。最后举例说明结论的可行性。

Abstract

The paper deals with the existence of solutions for a class of Volterra integral-differential equations. By using the fixed point method in Banach space, two theorems were obtained to give sufficient conditions for the existence of uncountable bounded positive solutions of the equation. The conclusions generalize these results. Finally, an example is given to illustrate the application of the theorems.

关键词

积分微分方程;不动点;Banach空间;不可数

Key words

integral-differential equation; fixed point; Banach space; uncountable

引用本文

导出引用
一类Volterra型积分微分方程不可数个有界正解的存在性. 广州大学学报(自然科学版). 2023, 22(6): 82-81
Existence for uncountable bounded positive solutions of Volterra integral differential equations. Journal of Guangzhou University(Natural Science Edition). 2023, 22(6): 82-81

参考文献

[1] 陈凤德.具无限时滞的非线性积分微分方程的周期解[J].应用数学学报,2003,26(1):141148
PDF(903 KB)

220

Accesses

0

Citation

Detail

段落导航
相关文章

/