基于WO3的微纳米颗粒氨气传感器及其室温气敏性能研究

潘书生, 吴 悠

PDF(2269 KB)
PDF(2269 KB)
广州大学学报(自然科学版) ›› 2025, Vol. 24 ›› Issue (1) : 33-40.
物理学

基于WO3的微纳米颗粒氨气传感器及其室温气敏性能研究

  • 潘书生, 吴 悠
作者信息 +

Preparation of ammonia gas sensor based on micro-nano WO3 and research on its gas sensing performance

  • PAN Shu-sheng, WU You
Author information +
History +

摘要

氨气检测涉及各种行业,可用于环境分析、空调压缩机、呼吸诊断分析、化肥工业等。氨气是环境和安全监测重点关注的对象,其相应的传感器显得尤为重要。目前,传统的氨气传感器检测速度已经得到一定的提升,但仍存在工作温度过高等不足,制备室温下快速检测氨气的传感器尤为必要。文章采用液相激光烧蚀的方法合成高氧空位的微纳米三氧化钨材料,用于高效的室温氨气传感器。该制备方法具有可控性好、纯度高、生产效率高和装置简单等优点,所获得的三氧化钨材料在室温下对氨气的响应度达到56%,优于同类型传感器的性能,有望应用于制作高性能的室温氨气传感器。

Abstract

Ammonia (NH3) detection plays a crucial role in various fields, including environmental analysis, air conditioning compressors, respiratory diagnostics, and the fertilizer industry. As a key concern in environmental and safety monitoring, its corresponding sensors are particularly important. Although traditional NH3 sensors have seen improvements in detection speed, there are limitations to their functions such as high operating temperatures. This underscores the necessity to develop sensors capable of rapidly detecting NH3 at room temperature. This study employs a liquid-phase laser ablation method to synthesize micro-nano tungsten trioxide (WO3) materials with high oxygen vacancies for highly efficient room-temperature NH3 sensors. The preparation method demonstrates advantages such as excellent controllability, high purity, high production efficiency, and simple equipment requirements. The synthesized WO3 material achieves a 56% response to NH3 at room temperature, outperforming similar sensors, showing promising potential for developing high-performance room-temperature NH3 sensors.

关键词

氨气传感器 / 室温 / 高响应度 / 高氧空位 / 氧化钨

Key words

NH3 sensor / room temperature / high response / high oxygen vacancy / WO3

引用本文

导出引用
潘书生, 吴 悠. 基于WO3的微纳米颗粒氨气传感器及其室温气敏性能研究. 广州大学学报(自然科学版). 2025, 24(1): 33-40
PAN Shu-sheng, WU You. Preparation of ammonia gas sensor based on micro-nano WO3 and research on its gas sensing performance. Journal of Guangzhou University(Natural Science Edition). 2025, 24(1): 33-40

参考文献

[1] Lee S K, Chang D, Kim S W. Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection[J]. Journal of Hazardous Materials, 2014, 268: 110-114.
[2] Hank C, Sternberg A, Köppel N, et al. Energy efficiency and economic assessment of imported energy carriers based on renewable electricity[J]. Sustainable Energy &Fuels, 2020, 4(5): 2256-2273.
[3] Wang D Y, Zhang D Z, Mi Q.A high-performance room temperature benzene gas sensor based on CoTiO3 covered TiO2 nanospheres decorated with Pd nanoparticles[J]. Sensors and Actuators B: Chemical, 2022, 350: 130830.
[4] Gong J W, Chen Q F, Fei W F, et al. Micromachined nanocrystalline SnO2 chemical gas sensors for electronic nose[J]. Sensors and Actuators B: Chemical, 2004, 102(1): 117-125.
[5] Yuan K P, Zhu L Y, Yang J H, et al. Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing[J]. Journal of Colloid and Interface Science, 2020, 568(1): 81-88.
[6] Srinivasa R S, Reddy P S, Nagaraju P, et al. Synthesis and characterization of spray deposited nanostructured WO3 thin films for ammonia sensing applications[J]. Inorganic Chemistry Communications, 2022, 144: 109892.
[7] Llobet E, Molas G, Molinàs P, et al. Fabrication of highly selective tungsten oxide ammonia sensors[J]. Journal of the Electrochemical Society, 2000, 147(2): 776-779.
[8] Leng J Y, Xu X J, Lv N, et al. Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning[J]. Journal of Colloid and Interface Science, 2011, 356(1): 54-57.
[9] Wang C Y, Zhang X, Rong Q, et al. Ammonia sensing by closely packed WO3 microspheres with oxygen vacancies[J]. Chemosphere, 2018, 204(1): 202-209.
[10] Yao G Y, Yu J, Wu H, et al. P-type Sb doping hierarchical WO3 microspheres for superior close to room temperature ammonia sensor[J]. Sensors and Actuators B: Chemical, 2022, 359: 131365.
[11] Tripathi D, Chauhan P, Rawat R K. A synergistic approach to enhance sensitivity and selectivity of room temperature operable ammonia gas sensor with humidity assistance using RGO/WO3 nanocomposite[J]. Nanotechnology, 2024, 35(6): 065503.
[12] Patil P P, Phase D M, Kulkarni S A, et al. Pulsed-laser-induced reactive quenching at liquid-solid interface: aqueous oxidation of iron[J]. Physical Review Letters, 1987, 58(3): 238-241.
[13] Chen X Y, Cui H, Liu P, et al. Double-layer hexagonal Fe nanocrystals and magnetism[J]. Chemistry of Materials, 2008, 20(5): 2035-2038.
[14] Sasaki K, Takada N. Liquid-phase laser ablation[J]. Pure and Applied Chemistry,2010, 82(6): 1317-1327.
[15] Yu W W, Shen Z G, Peng F, Lu Y, et al. Improving gas sensing performance by oxygen vacancies in sub-stoichiometric WO3-x[J]. RSC Advances, 2019, 9(14):7723-7728.
[16] Palla-Papavlu A, Filipescu M, Schneider C W, et al. Direct laser deposition of nanostructured tungsten oxide for sensing applications[J]. Journal of Physics D: Applied Physics, 2016, 49(20): 205101.
[17] Kolhe P S, Mutadak P, Maiti N, et al. Synthesis of WO3 nanoflakes by hydrothermal route and its gas sensing application[J]. Sensors and Actuators A: Physical,2020, 304(1): 111877.
[18] Dai M J, Zhao L P, Gao H Y, et al.Hierarchical assembly of α-Fe2O3 nanorods on multiwall carbon nanotubes as a high-performance sensing material for gas sensors[J].ACS Applied Materials: Interfaces, 2017, 9(10): 8919-8928.
[19] Barsan N, Weimar U. Conduction model of metal oxide gas sensors[J]. Journal of Electroceramics, 2001, 7(3): 143-167.
[20] 陈永义,鲍立荣,汪辉,等. 激光液相烧蚀法制备纳米粒子研究进展[J].中国激光, 2021, 48(6): 25-42.
PDF(2269 KB)

89

Accesses

0

Citation

Detail

段落导航
相关文章

/