磷灰石对溶液中铀的去除行为研究

陈迪云, 张晓峰

PDF(1645 KB)
PDF(1645 KB)
广州大学学报(自然科学版) ›› 2014, Vol. 13 ›› Issue (4) : 69-73.
环境与地理科学

磷灰石对溶液中铀的去除行为研究

  • 陈迪云, 张晓峰
作者信息 +

Uranium removal rule in solution by natural apatite

  • CHEN Di-yun, ZHANG Xiao-feng
Author information +
History +

摘要

通过静态实验,分别研究了不同的时间、pH值、铀初始质量浓度、磷灰石用量等条件下磷灰石去除溶液中铀的行为.结合红外光谱、扫描电镜、X衍射和磷析出量等分析结果,初步探讨了天然磷灰石去除铀的机理.结果表明,一定质量的磷灰石对溶液中铀的去除量随铀初始浓度的增大而增大,随着温度的升高先上升后下降.在pH值为3~4,天然磷灰石用量为1.0 g时去除效果最好,铀的去除率高达80%以上,反应在120 min基本达到平衡,反应符合二级动力学方程.XRD分析可知磷灰石主要成份是Ca5H2(PO4)3F、Ca8H2(PO4)6·H2O,扫描电镜分析与含铀溶液反应前后磷灰石矿物形貌变化不大,磷灰石对溶液中铀的去除主要以吸附和离子交换作用为主.

Abstract

Through the static experiments, the effects of time, pH value, initial concentration of uranium, dosage of apatite on removal of uranium by natural apatite were studied analytically in this paper. In accordance with analysis of infrared spectroscopy, scanning electron microscopy and X ray diffraction, the mechanism of removal of uranium by apatite was discussed. The results show that the removal of apatite, detergent quality of uranium increases with the initial concentration of uranium. When the pH was 3~4 and the apatite content was 1.0 g, the removal ratio was the highest, which could reach as high as 80%. The reaction reached balance in the 120 min with two order kinetics equation. XRD showed apatite was mainly composed of Ca5H2(PO4)3F, Ca8H2(PO4)6·H2O. Scanning electron microscope analysis showed that the appearance of apatite did not change in the process of uranium removal. The uptake mechanism of uranium by apatite is mainly adsorption and ion exchange

关键词

磷灰石 / 溶液铀去除 / 反应机理

Key words

apatite / uranium removal / reaction mechanism

引用本文

导出引用
陈迪云, 张晓峰. 磷灰石对溶液中铀的去除行为研究. 广州大学学报(自然科学版). 2014, 13(4): 69-73
CHEN Di-yun, ZHANG Xiao-feng. Uranium removal rule in solution by natural apatite. Journal of Guangzhou University(Natural Science Edition). 2014, 13(4): 69-73

参考文献

[1] TAKEHIKO T. Adsorption of uranium from acidic solution by microbes and effect of thorium on uranium adsorption by streptomyces levoris[J]. J Biosci Bioeng,2004,97:271.
[2] KALIN M, WHEELER W N, MEINRATH G. The removal of uranium from mining waste water using algal/microbial biomass[J]. J Environ Radioact,2005,78:151-177.
[3] 夏良树,谭凯旋,王晓,等.铀在榕树叶上的吸附行为及其机理分析[J].原子能科学技术, 2010, 44(3):278-283.
XIA L S, TAN K X, WANG X, et al.Adsorption behavior of uranium and mechanism analysis on banyan leaves[J].Atomi Energy Sci Tech, 2010, 44(3):278-283.
[4] 夏良树,张晓峰,黄欣.凹凸棒石与硫酸亚铁协同吸附铀[J].原子能科学技术, 2013, 47(11):1944-1950.
XIA L S, ZHANG X F, HUANG X. Synergistic treatment of Uranium-containing wastewater by attapulgite and FeSO4[J].Atom Energy Sci Tech, 2013, 47(11):1944-1950.
[5] LI P F, MAO Z Y. Biosorption of uranium by lake-harvested biomass from a cyanobacterium bloom[J]. Biores Tech,2004,94(2):193-195.
[6] KHANI M H, KESHTKAR A R, GHANNADI M, et al. Equilibrium,kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae[J]. J Hazard Mater,2008,150:612-618.
[7] WANG G, LIU J, WANG X, et al. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan[J]. J Hazard Mater,2009,168(2-3):1053-1058.
[8] AREY J S, SEAMAN J C, BERTSCH P M. Immobilization of uranium in contaminated sediments by hydroxyapatite addition[J]. Environ Sci Tech, 1999, 33(2):337-342.
[9] FULLER C C, BARGAR J R, DAVIS J A, et al. Mechanisms of uranium interactions with hydroxyapatite: Implications for groundwater remediation[J]. Environ Sci Tech, 2002, 36(2): 158-165.
[10]OHNUKI T, KOZAI N, SAMADFAM M, et al. The formation of autunite (Ca(UO2)2(PO4)2·nH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite[J]. Chem Geol, 2004, 211(1/2):1-14.
[11]WELLMAN D M, PIERCE E M, VALENTA M M. Efficacy of soluble sodium tripolyphosphate amendments for the in-situ immobilization of uranium[J]. Environ Chem, 2007, 4(5):293-300.
[12]ALMAZAN T. Surface complexation modeling of uranium(Ⅵ) sorbed onto zirconium oxophosphate versus temperature: Thermodynamic and structural appoaches[J]. J Colloid Interf Sci, 2008, 323:42-51.
[13]BEAZLEY M J, MARTINEZ R J, SOBECKY, et al. Nonreductive biomineralization of uranium(Ⅵ) phosphate via microbial phosphatase activity in anaerobic conditions[J]. Geomicr J, 2009, 26: 431-441.
[14]SINGH A, ULRICH K U, GIAMMAR D E. Impact of phosphate on U(Ⅵ) immobilization in the presence of goethite[J]. Geoch Cosmoch Acta, 2010, 74(22):6324-6343.
[15]BEAZLEY M J, MARTINEZ R J, WEBB S M, et al. The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils[J]. Geoch Cosmoch Acta, 2011, 75: 5648-5663.
[16]钱丽娟,胡佩卓,牟婉君,等. 铀酰离子在磷酸锆上的吸附性能[J]. 核化学与放射化学,2010, 32(4):216-220.
QIAN L J, HU P Z, MOU W J, et al. Adsorption of uranyl ion in zirconium phosphate[J]. Nucl Radioch, 2010, 32(4):216-220.
[17]邓冰,蒋树彬.UO2+2在羟基磷灰石上的吸附[J]. 核化学与放射化学, 2013, 35(1):46-53.
DENG B, JIANG S B. Adsorption of uranium by hydroxyapatite[J]. Nucl Radioch, 2013, 35(1):46-53.
[18]张燮. 工业分析化学[M]. 北京:化学工业出版社, 2002.
ZHANG X. Industrial analytical chemistry[M]. Beijing: Chemical Industry Press, 2002.

基金

国家自然科学基金资助项目(41372364);羊城学者首席科学家资助项目(12A007S)
PDF(1645 KB)

117

Accesses

0

Citation

Detail

段落导航
相关文章

/