一类辅助常微分方程的亚纯函数通解

袁文俊, 古勇毅, 孟凡宁, AMINAKBARI Najva

PDF(952 KB)
PDF(952 KB)
广州大学学报(自然科学版) ›› 2017, Vol. 16 ›› Issue (1) : 17-24.
高水平大学建设重点栏目

一类辅助常微分方程的亚纯函数通解

  • 袁文俊, 古勇毅, 孟凡宁*, AMINAKBARI Najva
作者信息 +

On the general meromorphic solutions for an auxiliary ordinary differential equation

  • YUAN Wen-jun, GU Yong-yi, MENG Fan-ning*, AMINAKBARI Najva
Author information +
History +

摘要

考虑一类常微分方程Aw″+Bw′+Cw+Dw2+E=0, 然后运用一个新方法——复方法, 得出此类辅助常微分方程的亚纯函数通解,并运用这些结果得到Fisher方程、Oskolkov方程、BBMPB方程和OBBMB方程的所有亚纯行波精确解.结果显示,Fisher方程、Oskolkov方程、BBMPB方程和OBBMB方程的所有单周期函数解为孤立行波解,而且复方法比其他方法更简捷有效.

Abstract

In this paper, we consider a class of ordinary differential equation Aw″+Bw′+Cw+Dw2+E=0, and then we use a new method named complex method to derive the general meromorphic solutions for this auxiliary ordinary differential equation. At last, all traveling wave exact solutions for the Fisher equation, Oskolkov equation, BBMPB equantion and OBBMB equation can be found by our results. Our results shows that all simple periodic exact solutions in the Fisher equation, Oskolkov equation, BBMPB equantion and OBBMB equation are solitary wave solutions, and the complex method is simpler and more precise than other methods.

关键词

微分方程 / 通解 / 亚纯函数 / 椭圆函数

Key words

differential equation / general solution / meromorphic function / elliptic function

引用本文

导出引用
袁文俊, 古勇毅, 孟凡宁, AMINAKBARI Najva. 一类辅助常微分方程的亚纯函数通解. 广州大学学报(自然科学版). 2017, 16(1): 17-24
YUAN Wen-jun, GU Yong-yi, MENG Fan-ning, AMINAKBARI Najva. On the general meromorphic solutions for an auxiliary ordinary differential equation. Journal of Guangzhou University(Natural Science Edition). 2017, 16(1): 17-24

参考文献

[1] ABLOWITZ M A, CLARKSON P A. Solitons, nonlinear evolution equations and inverse scattering[M]. London Mathematical Society Lecture Note Series 149, Cambridge, UK: Cambridge University Press, 1991.
[2] HIROTA R, SATSUMA J. Soliton solutions of a coupled Korteweg-de Vries equation[J]. Phys Lett A, 1981, 85(8/9): 407-408.
[3] MATVEEV V B, SALLE M A. Darboux transformations and solitons[M]. Springer Series in Nonlinear Dynamics, Berlin Germany:Springer, 1991.
[4] OLVER P J. Applications of lie groups to differential equations. Graduate Texts in Mathematics[M]. 2nd ed. Vol 107, New York, USA: Springer, 1993.
[5] LI J B, LIU Z R. Travelling wave solutions for a class of nonlinear dispersive equations[J]. Chin Ann Math, 2002, 23(3): 397-418.
[6] TANG S Q, HUANG W T. Bifurcations of travelling wave solutions for the generalized double sinh-Gordon equation[J]. Appl Math Comp, 2007, 189(2): 1774-1781.
[7] FENG D H, HE T L, LYU J L. Bifurcations of travelling wave solutions for (2+1)-dimensional Boussinesq-type equation[J]. Appl Math Comp, 2007, 185(1): 402-414.
[8] TANG S Q, ZHENG J X, HUANG W T. Travelling wave solutions for a class of generalized KdV equation[J]. Appl Math Comp, 2009, 215 (7): 2768-2774.
[9] MALFLIET W, HEREMAN W. The tanh method: I. Exact solutions of nonlinear evolution and wave equations[J]. Phys Sci, 1996, 54(6): 563-568.
[10]TANG S Q, XIAO Y X, WANG Z J. Travelling wave solutions for a class of nonlinear fourth order variant of a generalized Camassa-Holm equation[J]. Appl Math Comp, 2009, 210(1): 39-47.
[11]WANG M L, Solitary wave solutions for variant Boussinesq equations[J]. Phys Lett A, 1995, 199(3/4): 169-172.
[12]FAN E. Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics[J]. Chaos Soliton Fract, 2003, 16(5): 819-839.
[13]KUDRYASHOV N A. Meromorphic solutions of nonlinear ordinary differential equations[J]. Comm Nonl Sci Num Simul, 2010, 15(10): 2778-2790.
[14]DEMINA M V, KUDRYASHOV N A. From Laurent series to exact meromorphic solutions: the Kawahara equation[J]. Phys Lett A, 2010, 374(39): 4023-4029.
[15]DEMINA M V, KUDRYASHOV N A. Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations[J]. Comm Nonl Sci Num Simul, 2011, 16(3): 1127-1134.
[16]KUDRYASHOV N A, SINELSHCHIKOV D I, DEMINA M V. Exact solutions of the generalized Bretherton equation[J]. Phys Lett A, 2011, 375(7): 1074-1079.
[17]YUAN W J, LI Y Z, LIN J M. Meromorphic solutions of an auxiliary ordinary differential equation using complex method[J]. Math Meth Appl Sci, 2013, 36(13): 1776-1782.
[18]YUAN W J, HUANG Y, SHANG Y D. All travelling wave exact solutions of two nonlinear physical models[J]. Appl Math Comp, 2013, 219(11): 6212-6223.
[19]YUAN W J, SHANG Y D, HUANG Y, et al. The representation of meromorphic solutions to certain ordinary differential equations and its applications[J]. Sci Sin (Math), 2013, 43(6): 563-575.
[20]LANG S. Elliptic functions[M]. 2nd ed. New York: Springer Verlag, 1987.
[21]CONTE R, MUSETTE M. Elliptic general analytic solutions[J]. Stud Appl Math, 2009, 123(1): 63-81.
[22]QI J M, CHEN Q H, XIONG W L, et al. A note about the general meromorphic solutions of the Fisher equation[J]. Math Probl Eng, 2014, 2014: 1-4.
[23]ABLOWITZ M J, ZEPPETELLA A. Explicit solution of Fisher′s equation for a special wave speed[J]. Bull Math Biol, 1979, 41(6): 835-840.
[24]FENG Z S, LI Y. Complex traveling wave solutions to the Fisher equation[J]. J Phys A, 2006, 366: 115-123.
[25]GUO B Y, CHEN Z X. Analytic solutions of the Fisher equation[J]. J Phys A, 1991, 24(3): 645-650.
PDF(952 KB)

108

Accesses

0

Citation

Detail

段落导航
相关文章

/