Mechanism on bifurcation behaviors of hysteretic current controlled Buck converter

HU Wei, XU Ya-wu, ZHANG Fang-ying

PDF(1221 KB)
PDF(1221 KB)
Journal of Guangzhou University(Natural Science Edition) ›› 2015, Vol. 14 ›› Issue (2) : 71-75.

Mechanism on bifurcation behaviors of hysteretic current controlled Buck converter

  • HU Wei, XU Ya-wu, ZHANG Fang-ying
Author information +
History +

Abstract

The instability behaviors of the hysteretic current controlled Buck converter have been studied. Based on the analysis, the period-doubling bifurcation and Neimark bifurcation will occurr as the threshold of the hysteretic is varied. The exact discrete-time model of the closed loop system has been built, the bifurcation point and types of the topology were predicted by using the monodromy matrix theory. The mechanism of the bifurcation lies in that one of the eigenvalues of the monodromy matrix passes through the right half plane of the unit circle. Simulation results proved the theoretic analysis.

Key words

hysteretic control / Buck converter / bifurcation / monodromy matrix

Cite this article

Download Citations
HU Wei, XU Ya-wu, ZHANG Fang-ying. Mechanism on bifurcation behaviors of hysteretic current controlled Buck converter. Journal of Guangzhou University(Natural Science Edition). 2015, 14(2): 71-75

References

[1] ERICKSON R W, MAKSIMOVIC D. Fundamentals of power electronics[M]. New York: Springer, 2001:7.
[2] 张方樱,杨汝,龙晓莉,等.V2控制Buck变换器分岔与混沌行为的机理及镇定[J]. 物理学报, 2013, 62(21): 218404.1-9.
ZHANG F Y,YANG R,LONG X L, et al. Mechanism of instability behaviors and stabilization on V2 controlled buck converter[J]. Acta Phys Sin, 2013, 62(21): 218404.1-9.
[3] 谢玲玲,龚仁喜,卓浩泽,等.电压模式控制不连续传导模式boost变换器切分岔研究[J]. 物理学报, 2012, 61(5): 058401.1-7.
XIE L L, GONG R X, ZHUO H Z, et al. Investigation of tangent bifurcation in voltage mode controlled DCM boost converters[J]. Acta Phys Sin, 2012, 61(5): 058401.1-7.
[4] 王发强,马西奎,闫晔.不同开关频率下电压控制升压变换器中的Hopf分岔分析[J]. 物理学报, 2011, 60(6): 060510.1-8.
WANG F Q, MA X K, YAN Y. Analysis of Hopf bifurcation in voltage-controlled boost converter under different switching frequencies[J]. Acta Phys Sin, 2011, 60(6): 060510.1-8.
[5] YUAN G, BANERJEE S, OTT E, et al. Border-collision bifurcations in the buck converter[J]. IEEE Trans Circuits Syst I, Fundam Theory Appl, 1998, 45: 707-716.
[6] LIU Y F, SEN P C. Large-signal modeling of hysteretic current-programmed converters[J]. IEEE Trans Power Electron, 1996, 11(3): 423-430.
[7] SZEPESI T. Stabilizing the frequency of hysteretic current-mode DC/DC converters[J]. IEEE Trans Power Electron, 1987(4): 302-312.
[8] LEUNG K K S, CHUNG H S H, HUI S Y R. Use of state trajectory prediction in hysteresis control for achieving fast transient response of the buck converter[C]∥Proc IEEE, 2003, 3: 439-442.
[9] DAHO I, GIAOURIS D, ZAHAWI B, et al. Stability analysis and bifurcation control of hysteresis current controlled Ac'1uk converter using Filippov’s method[C]∥PEMD, 2008: 381-385.
[10]GIAOURIS D, BANERJEE S, ZAHAWI B, et al. Stability Analysis of the Continuous-Conduction-Mode Buck Converter Via Filippov’s Method[J]. IEEE Trans Circuits Syst I, Reg Papers, 2008, 55(4): 1084-1096.
[11]DI BERNARDO M, VASCA F. Discrete-time maps for the analysis of bifurcations and chaos in DC/DC converters[J]. IEEE Trans Circuit Syst I: Fund Theory Appl, 2000, 47(2): 130-143.
[12]LEINE R I, VAN CAMPEN D H, VAN DE VRANDE B L. Bifurcations in Nonlinear Discontinuous Systems[J]. Nonl Dynam, 2000, 23: 105-164.

PDF(1221 KB)

116

Accesses

0

Citation

Detail

Sections
Recommended

/