Chain transitive and chain mixing in nonautonomous discrete dynamical systems

LIU Qing, YI Peng

PDF(1053 KB)
PDF(1053 KB)
Journal of Guangzhou University(Natural Science Edition) ›› 2018, Vol. 17 ›› Issue (6) : 16-20.

Chain transitive and chain mixing in nonautonomous discrete dynamical systems

  • LIU Qing, YI Peng
Author information +
History +

Abstract

In this paper, we discuss chain transitive property and topological transitive property in nonautonomous discrete dynamical system (X,F). Meanwhile, we prove that: if F is chain mixing, then Fk is also chain mixing for any positive integer k; If there is a positive integer k, Fk is chain transitive,then F also chain transitive. It should also be noted that topological transitive and chain mixing in non-autonomous discrete dynamical system have uniform conjugate invariance.

Key words

chain transitive / topological transitive / pseudo orbit tracing property / time varying map

Cite this article

Download Citations
LIU Qing, YI Peng. Chain transitive and chain mixing in nonautonomous discrete dynamical systems. Journal of Guangzhou University(Natural Science Edition). 2018, 17(6): 16-20

References

[1] BALIBREA F, OPROCHA P. Weak mixing and chaos in nonautonomous discrete systems[J]. Applied Mathematics Letters, 2012, 25(8):1135-1141.
[2] HUANG Q, SHI Y, ZHANG L. Sensitivity of non-autonomous discrete dynamical systems[J]. Applied Mathematics Letters, 2015, 39(1):31-34.
[3] WU X, ZHU P. Chaos in a class of non-autonomous discrete systems[J]. Applied Mathematics Letters, 2013, 26(4):431-436.
[4] 易鹏, 吴红英. 非自治动力系统中的平均跟踪[J]. 怀化学院学报, 2017(11):33-36.
[5] KOLYADA S, SNOHA L. Topological entropy of nonautonomous dynamical systems[J]. Random and Computational Dynamics, 1996, 4:205-233.
[6] THAKKAR D, DAS R. Topological stability of a sequence of maps on a compact metric space[J]. Bulletin of Mathematical Sciences, 2014, 4(1):99-111.
[7] SHI Y, CHEN G. Chaos of time-varying discrete dynamical systems[J]. Journal of Difference Equations & Applications, 2009, 15(5):429-449.
[8] 廖俊侠, 范胜君. 函数族等度连续的一个充要条件[J]. 数学教学研究, 2014, 33(7):64-66.
[9] RICHESON D, WISEMAN J. Chain recurrence rates and topological entropy[J]. Topology & Its Applications, 2008, 156(2):251-261.
[10]颜棋.拓扑动力系统中若干动力性状的研究[D].南昌:南昌大学,2016.
[11]汪火云, 曾鹏. 平均伪轨的部分跟踪[J]. 中国科学:数学, 2016, 46(6):781-792.
[12]BRUNO A G, VIRILI S. Topological entropy in totally disconnected locally compact groups[J]. Ergodic Theory & Dynamical Systems, 2015, 45:175-187.
PDF(1053 KB)

121

Accesses

0

Citation

Detail

Sections
Recommended

/