The study on the difference of urban housing pricebased on Hedonic quantile regression model:Taking Shenzhen as an example

HUANG Cai-zhu

PDF(1227 KB)
PDF(1227 KB)
Journal of Guangzhou University(Natural Science Edition) ›› 2018, Vol. 17 ›› Issue (6) : 21-25.

The study on the difference of urban housing pricebased on Hedonic quantile regression model:Taking Shenzhen as an example

  • HUANG Cai-zhu
Author information +
History +

Abstract

Urban housing is a typical heterogeneous commodity, whose price is determined by the utility of all characteristics. For heterogeneous commodities, this paper is based on the sample data of commercial housing transactions in Shenzhen in 2016.Based on the related theory of Hedonic model, we use stepwise regression algorithm, Lasso penalty algorithm respectively to build housing price model. The results show that the most influential factor on the housing price of Shenzhen is the greening rate. Finally, the housing price quantile regression model is constructed with the 5%, 25%, 50%, 75% and 95% points of the housing price in Shenzhen. It is found that the coefficients of significant characteristic variables vary greatly at different housing price points, which is reflected in the different preferences of people on residential properties at different housing prices.

Key words

Shenzhen house price / Hedonic model / Lasso penalty algorithm / quantile regression model

Cite this article

Download Citations
HUANG Cai-zhu. The study on the difference of urban housing pricebased on Hedonic quantile regression model:Taking Shenzhen as an example. Journal of Guangzhou University(Natural Science Edition). 2018, 17(6): 21-25

References

[1] 宫汝凯. 财政不平衡和房价上涨:中国的证据[J]. 金融研究, 2015,37(4):66-81.
[2] 陈祝叶. 海南旅游房地产价格影响因素研究[D]. 长沙:湖南师范大学, 2011.
[3] 柳启慧. 基于HEDONIC模型的滨海旅游地产价格影响因素研究[D]. 上海:上海大学, 2013.
[4] 唐铭杰, 刘宣. 城市住宅结构特征的居民偏好分析[J]. 经济地理, 2015,35(5):72-77.
[5] 何里文, 邓敏慧, 韦圆兰. 武广高铁对住宅价格影响的实证分析——基于Hedonic Price模型和微观调查数据[J]. 现代城市研究, 2015,30(8):14-20,25.
[6] 董倩. 重复特征“R-H”交易法——二手房价格指数编制方法研究[J]. 统计研究, 2017,34(3):118-128.
[7] 张翼. 学区房溢价的再估计:以北京市为例[J]. 经济问题探索, 2017, 38(8): 57-63.
[8] LUO Y, LI S, ZHANG Y. Urban environment improvement assessment by using hedonic price: Impact of city water system project in china[J]. Environmental Progress & Sustainable Energy, 2018, 37(4): 1339-1347.
[9] JANAK J, MOHAMMAD A, ROBERT P B. Valuing farm access to irrigation in Nepal: A hedonic pricing model[J]. Agricultural Water Management, 2017, 181(2): 35-46.
[10]赵俊琴. 基于Lasso的高维数据线性回归模型统计推断方法比较[D]. 太原:山西医科大学, 2015.
[11]BUTLER R V. The specification of Hedonic indexes for urban housing[J]. Land Economics, 1982, 58(1): 96-108.
[12]TISHIRANI R.Regression shrinkage and selection via the Lasso[J]. Joural of the Royal Statistical Society, Series B, 1996, 58(1):267-288.
[13]关静,史道济.分位数回归与上证综指VaR研究[J]. 统计与信息论坛, 2008, 23(12):15-19.
[14]KOENKER R, BASSETT G J. Regression quantiles[J]. Econometrica, 1978, 46(1):33-50.
[15]黄静. 城市居民住房消费选择中的“新房偏好”效应研究——基于分位数模型的反事实分解[J]. 管理评论, 2017,29(11):41-49.
PDF(1227 KB)

400

Accesses

0

Citation

Detail

Sections
Recommended

/